GS1 Logistics Label Guideline

Release 1.0.2, Ratified, Oct 2015
Document Summary

<table>
<thead>
<tr>
<th>Document Item</th>
<th>Current Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Name</td>
<td>GS1 Logistics Label Guideline</td>
</tr>
<tr>
<td>Document Date</td>
<td>Oct 2015</td>
</tr>
<tr>
<td>Document Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Document Issue</td>
<td>2</td>
</tr>
<tr>
<td>Document Status</td>
<td>Ratified</td>
</tr>
<tr>
<td>Document Description</td>
<td>provides an overview of the relevant rules in the GS1 General Specifications and provides best practice recommendations based on implementation experiences around the world</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buss, Jill</td>
<td>3M Company</td>
</tr>
<tr>
<td>Poetker, Cynthia</td>
<td>Abbott Laboratories Inc.</td>
</tr>
<tr>
<td>Morrison, Martin</td>
<td>Axicon Auto ID Ltd</td>
</tr>
<tr>
<td>Jesus, Ed</td>
<td>Chep</td>
</tr>
<tr>
<td>Wilkie, Carrie</td>
<td>Dawn Food Products</td>
</tr>
<tr>
<td>Radomski, Nadine</td>
<td>Dean Foods Company</td>
</tr>
<tr>
<td>Bradley, Ardelta</td>
<td>Georgia Pacific</td>
</tr>
<tr>
<td>Martin de Urrengoeche</td>
<td>GS1 Argentina</td>
</tr>
<tr>
<td>Schmid, Sue</td>
<td>GS1 Australia</td>
</tr>
<tr>
<td>Scavone, Peta</td>
<td>GS1 Australia</td>
</tr>
<tr>
<td>Sehorz, Eugen</td>
<td>GS1 Austria</td>
</tr>
<tr>
<td>Gerald Gruber</td>
<td>GS1 Austria</td>
</tr>
<tr>
<td>Stefanie de Rocker</td>
<td>GS1 Belgium Luxembourg</td>
</tr>
<tr>
<td>Clark, Daniel</td>
<td>GS1 Canada</td>
</tr>
<tr>
<td>Liu, Wei</td>
<td>GS1 China</td>
</tr>
<tr>
<td>Slobodan Romac</td>
<td>GS1 Croatia</td>
</tr>
<tr>
<td>Mikko Luokkamaki</td>
<td>GS1 Finland</td>
</tr>
<tr>
<td>Hakala, Perti</td>
<td>GS1 Finland</td>
</tr>
<tr>
<td>Östman, Benjamin</td>
<td>GS1 Finland</td>
</tr>
<tr>
<td>Slobodan Romac</td>
<td>GS1 Croatia</td>
</tr>
<tr>
<td>Barras, Xavier</td>
<td>GS1 France</td>
</tr>
<tr>
<td>Houlette, Cedric</td>
<td>GS1 France</td>
</tr>
<tr>
<td>Heide Buhl</td>
<td>GS1 Germany</td>
</tr>
<tr>
<td>Machemer, Ilka</td>
<td>GS1 Germany</td>
</tr>
<tr>
<td>Sarachman, Michael</td>
<td>GS1 Global Office</td>
</tr>
<tr>
<td>Sharkey, Frank</td>
<td>GS1 Global Office</td>
</tr>
<tr>
<td>Oney, Lutfi Ilteris</td>
<td>GS1 Global Office</td>
</tr>
</tbody>
</table>
Log of Changes

<table>
<thead>
<tr>
<th>Release</th>
<th>Date of Change</th>
<th>Changed By</th>
<th>Summary of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>30-Apr-2014</td>
<td>Coen Janssen</td>
<td>Initial version</td>
</tr>
<tr>
<td>1.0.1</td>
<td>27-Feb-2015</td>
<td>Coen Janssen</td>
<td>Errata: corrected the list of contributors and example in section 10.10.</td>
</tr>
</tbody>
</table>
Disclaimer

GS1®, under its IP Policy, seeks to avoid uncertainty regarding intellectual property claims by requiring the participants in the Work Group that developed this GS1 Logistics Label Guideline to agree to grant to GS1 members a royalty-free licence or a RAND licence to Necessary Claims, as that term is defined in the GS1 IP Policy. Furthermore, attention is drawn to the possibility that an implementation of one or more features of this Specification may be the subject of a patent or other intellectual property right that does not involve a Necessary Claim. Any such patent or other intellectual property right is not subject to the licencing obligations of GS1. Moreover, the agreement to grant licences provided under the GS1 IP Policy does not include IP rights and any claims of third parties who were not participants in the Work Group.

Accordingly, GS1 recommends that any organisation developing an implementation designed to be in conformance with this Specification should determine whether there are any patents that may encompass a specific implementation that the organisation is developing in compliance with the Specification and whether a licence under a patent or other intellectual property right is needed. Such a determination of a need for licencing should be made in view of the details of the specific system designed by the organisation in consultation with their own patent counsel.

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY OTHER WISE ARISING OUT OF THIS SPECIFICATION. GS1 disclaims all liability for any damages arising from use or misuse of this Standard, whether special, indirect, consequential, or compensatory damages, and including liability for infringement of any intellectual property rights, relating to use of information in or reliance upon this document.

GS1 retains the right to make changes to this document at any time, without notice. GS1 makes no warranty for the use of this document and assumes no responsibility for any errors which may appear in the document, nor does it make a commitment to update the information contained herein.

GS1 and the GS1 logo are registered trademarks of GS1 AISBL.
Table of Contents

1 Introduction ... 8
 1.1 Acknowledgements.. 8
 1.2 Scope of the guideline ... 8
 1.2.1 Labelling Logistic Units .. 8
 1.2.2 Labelling trade items such as cartons and outer cases ... 8
 1.2.3 Automatic Identification and Data Capture (AIDC) standards covered in this guideline..... 9
 1.3 Conventions applied in the guideline... 9
 1.3.1 References... 9
 1.3.2 Rules and recommendations .. 9
 1.3.3 Format of data elements.. 9

2 Lay-out of the label ... 9
 2.1 Introduction ... 10
 2.2 Building Blocks ... 10
 2.3 Segments... 12

3 How to include logistic unit information ... 13
 3.1 SSCC ... 13
 3.2 Including the SSCC on the label .. 13
 3.3 Extract of Application Identifiers for logistic unit information................................. 14

4 How to include trade item information ... 14
 4.1 When would I use this?.. 14
 4.2 Trade item identification ... 15
 4.3 Trade item quantity ... 16
 4.4 Trade item measures ... 16
 4.5 Trade item dates ... 16
 4.6 Batch / lot number .. 17
 4.7 Serial numbers ... 18
 4.8 Extract of main Application Identifiers for trade item information 18

5 How to include transport and customer information 18
 5.1 When would I use this?.. 18
 5.2 Customer (Receiver) name and address ... 20
 5.3 Supplier (Shipper) name and address .. 20
 5.4 Routing code ... 20
 5.5 Ship for location / ultimate consignee .. 20
 5.6 Shipment identification ... 21
 5.7 Consignment identification .. 21
 5.8 Customer’s purchase order number .. 21
 5.9 Logistic measures ... 21
 5.10 Handling and processing instructions .. 22
 5.11 Extract of Application Identifiers for transport and customer information................... 23

6 Label Lay-out Rules .. 24
 6.1 Free Format ... 24
 6.2 Non-HRI Text with Data Titles... 24
6.2.1 Data titles .. 24
6.3 Barcodes and HRI ... 24
6.4 Rules related to label segments ... 26

7 Size of the GS1 Logistics Label ... 26

8 Label Placement ... 28
8.1 Label placement on larger logistic units (pallets, roll cages, etc.) .. 28
8.2 Label placement on smaller logistic units (including parcels) ... 29
8.3 Label placement on stacked pallets ... 29

9 Implementation Considerations ... 30
9.1 Best practice processes by role .. 30
9.2 Label implementation scenarios ... 31
9.3 Shipper / Supplier .. 32
 9.3.1 Pre-requisites ... 32
 9.3.2 Creating the SSCC .. 32
 9.3.3 Printing the label .. 32
 9.3.4 Attaching the label ... 33
 9.3.5 Sending the transport instruction ... 33
 9.3.6 Staging / Loading the logistic units ... 33
 9.3.7 Sending the Despatch Advice / ASN ... 34
9.4 Carrier ... 34
 9.4.1 Pre-requisites ... 34
 9.4.2 Processing the Transport Instruction ... 34
 9.4.3 Loading the logistic units ... 34
 9.4.4 Unloading the logistic units .. 35
 9.4.5 Sending the Transport Status Notification / Information on Delivery (IOD) 35
9.5 Receiver / Customer .. 35
 9.5.1 Pre-requisites ... 35
 9.5.2 Processing the Despatch Advice / ASN .. 36
 9.5.3 Inspecting and registering the received logistic units ... 36
 9.5.4 Sending the receiving advice .. 36
 9.5.5 Storing the goods ... 36
 9.5.6 Handling quality issues found after goods receipt .. 36

10 Practical Examples .. 37
10.1 SSCC-only label ... 37
10.2 GS1 Logistics Label for homogeneous logistic unit .. 38
10.3 GS1 Logistics Label for homogeneous logistic unit with variable measure items 39
10.4 GS1 Logistics Label for orderable pallet ... 40
10.5 GS1 Logistics Label for logistic unit that is a single trade item .. 41
10.6 GS1 Logistics Label for mixed pallet .. 42
10.7 GS1 Logistics Label with logistic unit and transport information in separate segments 43
10.8 GS1 Logistics Label with supplier, customer and transport segments 44
10.9 GS1 Logistics Label with transport information including postal code 45
10.10 GS1 Logistics Label with transport information including routing code and GINC 46

11 References .. 47
A Appendix A - GS1 Logistics Label Verification ... 48
 A.1 Basic principles ... 48
 A.2 Common verification approach ... 48
 A.2.1 Visual appearance ... 48
 A.2.2 Data content .. 48
 A.2.3 Technical parameters .. 48
 A.2.4 Verification report ... 49

B Appendix B – Label, symbol and text sizes ... 50
 B.1 A6 / 4.1 x 5.8 inch .. 50
 B.2 A5 / 5.8 x 8.3 inch .. 51
1 Introduction

The GS1 System is the most widely used supply chain standards system in the world and comprises the standards, guidelines, solutions and services created in formalised and collaborative processes. The Transport & Logistics industry involves the movement of goods using multiple transport modes, including road, rail, air and maritime. T&L processes involve a wide variety of parties such as consignor and consignee, freight forwarders and carriers as well as official bodies like customs and port authorities. The often complex logistics flows and the variety of involved parties imply there is a need for easy physical identification of logistic units. GS1 offers a standard to help accomplish this: The GS1 Logistics Label.

This guideline provides guidance on how to physically identify logistic units using the GS1 Logistics Label. It is based on the GS1 Standards described in the GS1 General Specifications, and on best practices gathered in various implementation projects around the world.

Note: This guideline is the successor of the GS1 Standard International Logistics Label guideline [STILL].

1.1 Acknowledgements

These recommendations have been developed in collaboration with GS1 Member Organisations and the Transport & Logistics (T&L) Member Organisation Interest Group working closely with local communities on Transport & Logistics process efficiencies.

Special acknowledgements to GS1 in Europe, GS1 UK, GS1 Norway, GS1 Finland, GS1 Netherlands, GS1 Australia and GS1 US for providing their guidelines and deployment materials. These materials have served as a basis for this guideline, some of their texts and examples have directly been taken over into this guideline.

1.2 Scope of the guideline

1.2.1 Labelling Logistic Units

The main topic of this guideline is the labelling of logistic units. A logistic unit is an item of any composition established for transport and/or storage which needs to be managed throughout the supply chain.

The GS1 Logistics Label allows users to identify logistic units uniquely so that they can be tracked and traced throughout the supply chain. The only mandatory requirement is that each logistic unit must be identified with a unique serial number, the Serial Shipping Container Code (SSCC).

Scanning the SSCC barcoded on each logistic unit allows the physical movement of units to be matched with the electronic business messages that refer to them. Using the SSCC to identify individual units opens up the opportunity to implement a wide range of applications such as cross docking, shipment routing, and automated receiving. Besides the SSCC other information can be included on the GS1 Logistics Label.

1.2.2 Labelling trade items such as cartons and outer cases

Trade items such as cartons and outer cases will often have a barcode encoding the Global Trade Item Number (GTIN). The barcode may be an ITF-14, EAN/UPC or in case additional item data is needed a GS1-128 barcode. It is important to note that such labels, when not containing an SSCC, are not considered to be GS1 Logistics Labels. This guideline mainly addresses logistics labelling. However, at various places notes have been included to explain how information may be presented using the GS1-128 standard. These notes have been marked as follows:

Note: Carton / Outer Case Labels
1.2.3 **Automatic Identification and Data Capture (AIDC) standards covered in this guideline**

This version of the guideline covers the use of the GS1-128 barcode. It does not provide guidance on the use of 2D barcodes and EPC/RFID technologies.

1.3 **Conventions applied in the guideline**

1.3.1 **References**

References to documents, websites etc. are indicated as follows [REFERENCE, paragraph number (optional)]. The list of references with full details is included in section 11.

1.3.2 **Rules and recommendations**

Rules and recommendations are numbered per section. For example clause [2-3] is the 3rd clause in section 2. Clauses that are marked as ‘normative’ are rules that are included in the GS1 General Specifications, these must be adhered to in order to be compliant with the GS1 Standards. Clauses that are not marked as 'normative' are additional best practice recommendations.

1.3.3 **Format of data elements**

The following conventions are applied to indicate the format of Application Identifiers and data elements.

To indicate the allowed characters:
- N numeric digit
- X any character, see [GENSPECS, figure 7.11 – 1] for the allowed characters.

To indicate the length:
- Nn exact number of digits
- N..n maximum number of digits
- Xn exact number of characters
- X..n maximum number of characters

Examples:
- X3 exactly 3 characters
- N..18 up to 18 numeric digits

To indicate digit / character position:
- Xn
- Nn

Examples:
- N3 numeric digit on position 3
- X16 any character on position 16

2 **Lay-out of the label**

This chapter provides an introduction to the lay-out of the GS1 Logistics Label. For the technical rules see section 6.
2.1 Introduction

The information included on a GS1 Logistics Label comes in two basic forms.

1. Information to be used by people: This is comprised of Human Readable Interpretation (HRI), Non-HRI text and graphics.
2. Information designed for data capture by a machine: Barcodes.

Barcodes are machine readable and are a secure and efficient method for conveying structured data, while HRI, Non-HRI text and graphics allow people general access to basic information at any point in the supply chain. Both methods add value to GS1 Logistics Labels, and often co-exist on the same label.

✔️ Note: HRI and Non-HRI Text.

For the purposes of interpreting this guideline, there are two types of text that appear on a label:

- HRI is the information below or beside a barcode which is encoded in the barcode and represents the same characters as carried in the barcode.
- Non-HRI Text is all other text on a label.

The SSCC is the single mandatory element for all GS1 Logistics Labels. Other information, when required, shall comply with the specifications in this document and with the proper use of Application Identifiers.

2.2 Building Blocks

On the GS1 Logistics Label a distinction is made between the types of data communicated on the GS1 Logistics label, in order to facilitate interpretation by machines and people. For this purpose the data can be expressed in three building blocks:

1. The 'Free Format' building block may contain Non-HRI text and graphics.
2. The 'Non-HRI Text Including Data Titles' building block contains Non-HRI text reflecting the information represented in the barcode(s) using data titles rather than AIs, and optionally additional information not represented in barcodes (preferably including data titles).
3. The 'Barcodes and HRI' building block contains the barcode(s) including human readable interpretation (HRI).
On the label and within label segments these building blocks are usually placed top down: Free Format (top), Non-HRI text including Data Titles (middle), Barcodes and HRI (bottom). If space permits it, and providing the barcodes conform to the size specifications for the application, the lower two building blocks may be placed side by side. See Figure below.

(Source GS1 UK)
2.3 Segments

The information to be included on the label may become available at separate stages. Also some information may need to be replaced during the lifetime of the logistic unit. Dividing the label into separate segments is a way to address this.

A segment is a logical grouping of information that is generally known at a particular time. There may be up to three label segments on a GS1 Logistics Label, each representing a group of information. Generally, the order of the segments, from top to bottom, is: carrier (transport), customer, and supplier. However, this order and top/down alignment may vary depending on the size of the logistic unit and the business process being served.

Segments may be printed separately in which case they must be placed vertically in close proximity of each other, with the segment containing the SSCC at the bottom. When segments are added separately, care should be taken not to obscure existing segments. The carrier segment may be replaced during the journey of the logistic unit, in which case special care should be taken to ensure the customer and supplier segments are preserved.

Important: When adding or replacing a segment an SSCC already present must never be replaced or changed.

When segments are used, within the segments the data still needs to be organised using building blocks as described in section 2.2. In that case segments are the primary grouping mechanism; building blocks are subordinate to that, see figure below for some examples.

Figure 2-3 Examples of label segmentation

Supplier Segment

The supplier segment of the label contains information that is generally known at the time of packaging by the supplier. The SSCC is applied here as the unit identifier, along with the GTIN if used.

Other information that may be of interest to the supplier but might also be useful for customers and carriers can be applied. This includes product-related information such as product variant; dates such as production, packaging, expiration, and best-before dates; and lot, batch, and serial numbers.
Customer Segment
The customer segment of the label contains information that is generally known at the time of order and order processing by the supplier. Typical information includes the ship to location, purchase order number, and customer-specific routing and handling information. If several logistic units are assembled to be transported under one despatch advice or Bill of Lading (BOL) to one customer the GSIN, AI (402) may also be applied in this customer segment.

Carrier (Transport) Segment
The carrier (transport) segment of the label contains information that is generally known at the time of shipment and is typically related to transport. Typical information includes ship to postal codes, AI (420), Global Identification Number for Consignment, AI (401), and carrier-specific routing and handling information.

3 How to include logistic unit information

3.1 SSCC
The format of the SSCC is as follows:

<table>
<thead>
<tr>
<th>Extension Digit</th>
<th>GS1 Company Prefix</th>
<th>Serial Reference</th>
<th>Check Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₁</td>
<td>N₂ N₃ N₄ N₅ N₆ N₇ N₈ N₉ N₁₀ N₁₁ N₁₂ N₁₃ N₁₄ N₁₈ N₁₇</td>
<td>N₁₈</td>
<td></td>
</tr>
</tbody>
</table>

The Extension Digit can have any value from 0 to 9 and is used to increase the numbering capacity of the Serial Reference. Its use is at the discretion of the company allocating the SSCC.

The GS1 Company Prefix (GCP) is allocated by GS1 Member Organisations to the company that allocates the SSCC – here the physical builder or the brand owner of the logistic unit. It makes the SSCC unique worldwide but does not identify the origin of the unit. The length of a GS1 Company Prefix depends on each GS1 Member Organisation’s policy on number allocation.

The Serial Reference is a serial number created by the company allocating the SSCC. The simplest way to allocate the serial number is sequentially, for example …00000, …00001, …00002.

The Check Digit is calculated using the algorithm defined by GS1. [GENSPECS, 7.10.1], also see [CHECK] for a calculator.

3.2 Including the SSCC on the label
[3-1] (Normative) The SSCC is the single mandatory element for all logistics labels. [GENSPECS 6.7.3].

[3-2] The SSCC should be assigned by the company that is creating the logistic unit, using its own company prefix.

If the logistic unit is not marked with an SSCC when it is received, the subsequent party in the supply chain may allocate the SSCC. This party can be a logistic service provider or the customer.

Carton / Outer Case Labels: On product case labels where the GTIN is the primary identification key the SSCC is not included.
3.3 Extract of Application Identifiers for logistic unit information

<table>
<thead>
<tr>
<th>AI</th>
<th>Full Title</th>
<th>Data Title</th>
<th>Format (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Serial Shipping Container Code</td>
<td>SCCC</td>
<td>N2 + N18</td>
</tr>
</tbody>
</table>

(* Format of the Application Identifier + Format of the data element

4 How to include trade item information

4.1 When would I use this?

Items that are priced or ordered or invoiced are considered trade items and are identified by a GTIN. Typically, supply chains are most efficient when:

\[GTIN \text{ of ordered item} = GTIN \text{ on the item being delivered} = GTIN \text{ of invoiced item}. \]

This is an important consideration in logistics label design.

When it comes to including trade item information three types of logistic units can be distinguished:

- A homogeneous unit containing one type of trade item. All the items at the highest level of packaging are the same and are identified with the same GTIN. Example: a pallet containing 50 trade item groupings of shampoo.

- A heterogeneous logistic unit containing different types of trade items at the highest level of packaging that are identified with different GTINs. Example: a pallet containing 30 standard trade item groupings (e.g. boxes) of shampoo and 20 standard trade item groupings (e.g. boxes) of conditioner.

- A logistic unit that is also a traded unit that is priced or ordered or invoiced (that is part of the supplier’s regular offer). Such logistic units can be homogeneous, for example goods in bulk, heterogeneous (for example display units), or a single product (for example a refrigerator, or a mobile phone transported as parcel).

For homogeneous logistic units and logistic units that are trade items it is possible to include information on the trade item(s) on the logistics label. This can be useful in situations where no despatch advice is used, or specific processes where the despatch advice information is not available, and for fail-safe reasons. For heterogeneous logistic units it is not possible to include trade item information on the logistics label and therefore the use of electronic messaging is strongly encouraged to support the exchange of data linked with the SSCC.

✔ **Carton / Outer Case Labels**: On heterogeneous logistic units it is possible to include trade item information on a product case label, using an EAN/UPC or ITF-14 symbol (GTIN only) or a GS1-128 symbol (GTIN and additional data).
4.2 Trade item identification

[4-1] When the logistic unit is homogeneous, and is not a trade item, the contents of the pallet may be defined using AI (02) CONTENT, specifying the GTIN of the included trade items (the highest packaging level contained in the logistic unit).

Note: Use of AI (02) is not the preferred option for regulated healthcare trade items.

[4-2] When the logistic unit is heterogeneous, and is not a trade item, no GTIN and related trade item information should be included.

[4-3] When the logistic unit is a trade item, the contents of the logistic unit may be defined using AI (01) GTIN, specifying the GTIN of the trade item.

[4-4] *(Normative)* AI (01) GTIN and AI (02) CONTENT must never be used together on a logistics label. [GENSPECS, 4.13.1]

[4-5] *(Normative)* AI (02) CONTENT may only be used in combination with AI (00) SSCC. [GENSPECS, 4.13.2]

[4-6] The trade item description may be included as free text.

Note: Carton / Outer Case Labels: On GS1-128 product case labels where the GTIN is the primary key and the SSCC is not present, AI (01) must always be used to indicate the GTIN.
4.3 Trade item quantity

[4-7] **(Normative)** When the identification of the contained trade items is provided by using AI (02) CONTENT, the number of trade items contained must be indicated using AI (37) COUNT. [GENSPECS, 4.13.2]

For example a pallet of 12 cases of 4 bottles would be identified at the pallet level with AI (02) containing the GTIN of the case and AI (37) showing a quantity of 12 cases. If identified at the case level, AI (02) would contain the GTIN of the item inside the case, and AI (37) would show a quantity of 4. This identification tool may also be useful when communicating about broken quantities within a standard pallet or case.

[4-8] **(Normative)** The use of AI (37) COUNT is not allowed in combination with AI (01) GTIN. [GENSPECS, 4.13.1]

[4-9] When the logistic unit contains variable measure trade items, AI (30) may be used to specify the total number of items contained:

- When used in combination with AI (02) it denotes the total number of items across all contained trade items
- When used in combination with AI (01) it denotes the total number of items within the trade item itself.

4.4 Trade item measures

Trade (net) measures are used to complete the identification of a variable measure trade item. They contain information such as the weight, size, volume or dimension of a variable measure trade item and, therefore, should never be applied alone but with the GTIN (with leading '9').

[4-10] The use of one of the following metric measures is recommended depending on the nature of the product:

- net weight in kilograms – AI (310n*)
- length in meters – AI (311n*)
- area in square meters – AI (314n*)
- net volume in litres – AI (315n*)

* ‘n’ indicates the implied decimal point position

Depending on the method of production, some roll products cannot be numbered according to standard criteria that have been determined in advance. They are, therefore, classified as variable items. For those products where the standard trade measures are not sufficient, the following guidelines should be used.

[4-11] The Application Identifier (8001) indicates that the GS1 Application Identifier data fields contain the variable attributes of a roll product.

The variable values of a roll product, N1 to N14, consist of the following data:

- N1 to N4: slit width in millimetres (width of the roll)
- N5 to N9: actual length in metres
- N10 to N12: internal core diameter in millimetres
- N13: winding direction (face out 0, face in 1, undefined 9)
- N14: number of splices (0 to 8 = actual number, 9 = number unknown)

4.5 Trade item dates

Some products (e.g. skateboards, clothing) do not require any date. However, it is recommended to include dates on the GS1 Logistics Label whenever applicable.

Dates are important for inventory control systems, e.g. to realise First-in - First-out (FIFO) in a distribution centre. For many goods there are legal requirements for a date to be clearly
communicated to the end consumer. For example within Europe many of these rules are based upon European Commission Directives for specific product types.

[4-12] If applicable one of the following dates should be given, depending on the type of product (grocery or non-grocery):

- Production date: AI (11) PROD DATE
- Packaging date: AI (13) PACK DATE
- Best before date: AI (15) BEST BEFORE
- Sell by date: AI (16) SELL BY
- Expiry date: AI (17) EXPIRY

![Figure 4-2 Logical sequence of date elements](image)

The included date will normally be of the same type as the date indicated on the product itself (often for legal reasons). This allows for consistent tracking and tracing in the unlikely event of a product recall, as the date used on the logistics label will match the date marked on the product.

Traceability Systems will not work, and possibly legal requirements will not be met if the correct date is not used for example if AI (15) Best Before Date is used to encode an Expiry Date AI (17). AI (15) is a statement about quality (e.g. a bottle of drinking water past its best before date may have diminished quality but it should not be harmful). AI (16) indicates the date specified by the manufacturer as the last date the retailer is to offer the product for sale to the consumer. AI (17) is the date that determines the limit of consumption or use of a product (e.g. using a medical product after this date may pose a health risk).

The following general rules should be applied when using dates on the GS1 Logistics Label:

[4-13] (Normative) Dates always relate to the GTIN specified on the label as AI (01) GTIN or as AI (02) CONTENT. [GENSPECS, 4.13.2]

[4-14] (Normative) For all of the date types mentioned in rule [4-12] only one date value can be specified on a logistics label. If the trade items contained in the logistic unit have various date values, these cannot be specified on the label. [GENSPECS, 4.13]

![Carton / Outer Case Labels](image)

Carton / Outer Case Labels: On product cases the contained consumer units usually will have the same date value. This means such dates can be presented on a product case label.

[4-15] (Normative) When expressed in barcode form, the date format for each AI is always YYMMDD where:

- YY provides the tens and units of the year (e.g. 2006 = 06) and is mandatory
- MM provides the number of the month (e.g. January = 01) and is also mandatory
- Day provides the number of the day of the relevant month (e.g. second day = 02); For Best Before or Expiry Dates it may not be necessary to specify the day. In that case the field must be filled with two zeroes, and will be interpreted as the last day of the noted month.

4.6 Batch / lot number

The Batch or Lot number of the trade item(s) may be included as AI (10) BATCH/LOT, for example for tracking and tracing purposes.

[4-16] (Normative) The batch / lot number always relates to the GTIN specified on the label as AI (01) GTIN or as AI (02) CONTENT. [GENSPECS, 4.13.2]
4.7 Serial numbers

A serial number may be included as AI (21) SERIAL, for example for tracking and tracing purposes. **(Normative)** The serial number always must be used in combination with a GTIN that is specified on the label as AI (01) GTIN. [GENSPECS, 4.13.2]

4.8 Extract of main Application Identifiers for trade item information

<table>
<thead>
<tr>
<th>AI</th>
<th>Full Title</th>
<th>Data Title</th>
<th>Format (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Global Trade Item Number</td>
<td>GTIN</td>
<td>N2 + N14</td>
</tr>
<tr>
<td>02</td>
<td>GTIN of trade items contained in a logistic unit</td>
<td>CONTENT</td>
<td>N2 + N14</td>
</tr>
<tr>
<td>10</td>
<td>Batch or Lot Number</td>
<td>BATCH/LOT</td>
<td>N2 + X..20</td>
</tr>
<tr>
<td>11</td>
<td>Production Date (YMMDDD)</td>
<td>PROD DATE</td>
<td>N2 + N6</td>
</tr>
<tr>
<td>13</td>
<td>Packaging Date (YMMDDD)</td>
<td>PACK DATE</td>
<td>N2 + N6</td>
</tr>
<tr>
<td>15</td>
<td>Best Before Date (YMMDDD)</td>
<td>BEST BEFORE or BEST BY</td>
<td>N2 + N6</td>
</tr>
<tr>
<td>16</td>
<td>Sell By Date (YMMDDD)</td>
<td>SELL BY</td>
<td>N2 + N6</td>
</tr>
<tr>
<td>17</td>
<td>Expiration Date (YMMDDD)</td>
<td>USE BY or EXPIRY</td>
<td>N2 + N6</td>
</tr>
<tr>
<td>21</td>
<td>Serial Number</td>
<td>SERIAL</td>
<td>N2 + X..20</td>
</tr>
<tr>
<td>30</td>
<td>Variable Count</td>
<td>VAR. COUNT</td>
<td>N2 + N..8</td>
</tr>
<tr>
<td>310n*</td>
<td>Net Weight, kilograms</td>
<td>NET WEIGHT (kg)</td>
<td>N4 + N6</td>
</tr>
<tr>
<td>311n*</td>
<td>Length or 1st dimension, metres</td>
<td>LENGTH (m)</td>
<td>N4 + N6</td>
</tr>
<tr>
<td>314n*</td>
<td>Area, square metres</td>
<td>AREA (m²)</td>
<td>N4 + N6</td>
</tr>
<tr>
<td>315n*</td>
<td>Net volume, litres</td>
<td>NET VOLUME (l)</td>
<td>N4 + N6</td>
</tr>
<tr>
<td>320n*</td>
<td>Net Weight, pounds</td>
<td>NET WEIGHT (lb)</td>
<td>N4 + N6</td>
</tr>
<tr>
<td>37</td>
<td>Count of Trade Items contained in a logistic unit</td>
<td>COUNT</td>
<td>N2 + N..8</td>
</tr>
<tr>
<td>8001</td>
<td>Roll Products (Width, Length, Core Diameter, Direction, Splices)</td>
<td>DIMENSIONS</td>
<td>N4 + N14</td>
</tr>
</tbody>
</table>

d{*}{'n'} is used to indicate the decimal point position.

() Format of the Application Identifier + Format of the data element

5 How to include transport and customer information

5.1 When would I use this?

Carriers (Logistic service providers) will often not have access to electronic information related to an SSCC. For them the inclusion of additional information is of the essence. Also customers / receivers may not always have access to all required information to properly process the logistic unit.

Typical information used for transport includes ship to postal code, consignment number, and carrier-specific routing and handling information such as a routing code. Typical customer information includes the ship to location, ultimate consignee address, purchase order number, shipment number,…
The label should facilitate automatic data capture of SSCCs when tracking packages and is also intended to be used for automatic sorting at transport terminals.

Transport information can be used for basic transport and delivery scenarios, but also in support of more advanced scenarios, such as order reconstruction.

Figure 5-1 Label including transport information

![Label including transport information](Image)

Source [GENSPECS]
5.2 Customer (Receiver) name and address

The ship to address is necessary for carriers in order to know the delivery location and to be able to deliver the goods to the right destination.

[5-1] The ship to information must relate to the physical address where the goods need to be delivered, not to the postal address (except for postal transport).

[5-2] In case the goods are delivered via a cross-dock terminal the ship to information must relate to the physical address of the terminal. The final destination address must be specified separately, see paragraph 5.5 Ship for location / ultimate consignee.

[5-3] The exact Ship To location can be included using the Global Location Number (GLN) in AI (410) SHIP TO LOC.

[5-4] Partial identification of the Ship To location can be accomplished by including the postal code in AI (420) SHIP TO POST or AI (421) SHIP TO POST. The use of AI (421) is recommended, and has the following structure: Country code (ISO 3166-1 numeric 3 format) followed by postal code (alphanumeric maximum 9 characters).

[5-5] (Normative) AI (420) SHIP TO POST and AI (421) SHIP TO POST must never be used in combination. [GENSPECS, 4.13.1]

The customer name and address may be included as free text.

[5-6] Depending on the country, the address can be expressed by one or several lines.

[5-7] Inclusion of the postal code is strongly recommended.

[5-8] The country code in Non-HRI text should be based on ISO 3166 with alpha 2 code.

5.3 Supplier (Shipper) name and address

The supplier (shipper) name and address may be useful for carriers in order to know the origin of the logistic unit. The supplier (shipper) name and address may only be included as free text.

[5-9] The supplier (shipper) information may relate to the either the physical address where the goods came from or the business address of the supplier (shipper).

[5-10] Depending on the country, the address can be expressed by one or several lines.

[5-11] Inclusion of the postal code is strongly recommended.

[5-12] The country code in Non-HRI text should be based on ISO 3166 with alpha 2 code.

[5-13] It is recommended to depict the supplier (shipper) name and address in a smaller font than the customer (receiver) name and address.

5.4 Routing code

The routing code and the postal code of the ship to location (see previous paragraph) represent the same functional need. They can be linked to the route network of the carrier. Generally the routing code is the more precise: It is defined by the carrier, and sent to the shipper in order to enable inclusion on the label.

[5-14] The routing code can be included using AI (403) ROUTE.

[5-15] The routing code can also be included as free text information.

5.5 Ship for location / ultimate consignee

In case the logistic unit needs to be cross-docked it can be important to include the ultimate consignee on the label.

[5-16] The ultimate consignee location can be included using the Global Location Number (GLN) in AI (413) SHIP FOR LOC.

[5-17] The ultimate consignee name and address may also be included as free text information.
5.6 **Shipment identification**

The shipment identification can be included on the label to ensure logistic units belonging to the same shipment will be delivered together. This can be important in cases where the goods are consolidated and deconsolidated during transport.

The GS1 Identification Key for shipments is the Global Shipment Identification Number (GSIN). The format of the GSIN is as follows:

<table>
<thead>
<tr>
<th>GS1 Company Prefix</th>
<th>Shipper reference</th>
<th>Check Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₁ N₂ N₃ N₄ N₅ N₆ N₇ N₈ N₉ N₁₀ N₁₁ N₁₂ N₁₃ N₁₄ N₁₅ N₁₆ N₁₇</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **GS1 Company Prefix (GCP)** is assigned by a GS1 Member Organisation to the company creating the shipment.

The **Shipper Reference** is a serial number created by the shipper. The simplest way to allocate the serial number is sequentially, for example ...00000, ...00001, ...00002.

The **Check Digit** is calculated using the algorithm defined by GS1. [GENSPECS, 7.10.1], for a check digit calculator see [CHECK].

[5-18] The shipment identification should be included using the Global Shipment Identification Number (GSIN) in AI (402) GSIN.

5.7 **Consignment identification**

The consignment identification can be included on the label to ensure completeness of a group of logistic units being transported together under the same transport contract. This can be important in cases where the logistic units are transported by secondary transport operators, only responsible for part of the total journey (for example via rail or ocean).

The GS1 Identification Key for consignments is the Global Identification Number for Consignment (GINC). The format of the GINC is as follows:

<table>
<thead>
<tr>
<th>GS1 Company Prefix</th>
<th>Consignment Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₁ N₂ N₃ N₄Nᵢ</td>
<td>Xᵢ₊₁ Xᵢ₊₂ Xᵢ (i,j≤30)</td>
</tr>
</tbody>
</table>

The **GS1 Company Prefix (GCP)** is assigned by a GS1 Member Organisation to the company that allocates the GINC - here the freight forwarder or carrier of the transport units.

The **Consignment Reference** is a serial number created by the carrier or freight forwarder. Typically, the GINC is used by freight forwarders to instruct transport providers, and holds the Master Way Bill (MWB) Number, for example a Master Airway Bill (MAWB) or a Master Bill-of-lading (MBL).

[5-19] The consignment identification should be included using the Global Identification Number for Consignments (GINC) in AI (401) GINC.

5.8 **Customer’s purchase order number**

The customer’s purchase order number can be included on the label to ensure completeness of the receipt, and to expedite further processing (for example in case of rush orders).

[5-20] The customer’s purchase order number can be included using AI (400) ORDER NUMBER.
5.9 Logistic measures

Weight information on the individual logistic unit as well as for the total shipment (for example in the form of nnn/nnn) can be useful information when transiting through intermediate warehouses. Depending on the situation, the label issuer may need to specify:

- **Weight: 50 / 300** the parcel weight and the shipment weight are known.
- **Weight: – / 300** only the total weight of the shipment is known.
- **Weight: 50 / –** only the weight of the parcel is known. Total weight is unknown.

Besides weight information also volume, area or dimensions may be of importance.

[5-21] The use of one or more of the following metric measures is recommended depending on the nature of the logistic unit:

- **logistic weight**: kilograms – AI (330n*), pounds – AI (340n*)
- **logistic volume**: litres – AI (335n*), cubic metres – AI (336n*), quarts – AI (362n*), gallons (US) – AI (363n*), cubic inches – AI (367n*), cubic feet – AI (368n*), cubic yards – AI (369n*)
- **area**: square metres – AI (334n*), square inches – AI (353n*), square feet – AI (354n*), square yards – AI (355n*)
- **kilograms per square metre** – AI (337n*)
- **length**: meters – AI (331n*), inches – AI (341n*), feet – AI (342n*), yards – AI (343n*)
- **width**: meters – AI (332n*), inches – AI (344n*), feet – AI (345n*), yards – AI (346n*)
- **height**: meters – AI (333n*), inches – AI (347n*), feet – AI (348n*), yards – AI (349n*)

* ‘n’ indicates the implied decimal point position

5.10 Handling and processing instructions

Free Format

The label issuer can include text or symbols indicating manual handling instructions on the label as free text.

For example:

Symbol 1 (0 – 15 kg) **Symbol 2** (>15-25 kg) **Symbol 3** (>25 kg)
5.11 Extract of Application Identifiers for transport and customer information

<table>
<thead>
<tr>
<th>AI</th>
<th>Full Title</th>
<th>Data Title</th>
<th>Format (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>330n*</td>
<td>Logistic weight, kilograms</td>
<td>GROSS WEIGHT (kg)</td>
<td>N4+N6</td>
</tr>
<tr>
<td>331n*</td>
<td>Length or first dimension, metres</td>
<td>LENGTH (m), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>332n*</td>
<td>Width, diameter, or second dimension, metres</td>
<td>WIDTH (m), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>333n*</td>
<td>Depth, thickness, height, or third dimension, metres</td>
<td>HEIGHT (m), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>334n*</td>
<td>Area, square metres</td>
<td>AREA (m²), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>335n*</td>
<td>Logistic volume, litres</td>
<td>VOLUME (l), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>336n*</td>
<td>Logistic volume, cubic metres</td>
<td>VOLUME (m³), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>337n*</td>
<td>Kilograms per square metre</td>
<td>KG PER m²</td>
<td>N4+N6</td>
</tr>
<tr>
<td>340n*</td>
<td>Logistic weight, pounds</td>
<td>GROSS WEIGHT (lb)</td>
<td>N4+N6</td>
</tr>
<tr>
<td>341n*</td>
<td>Length or first dimension, inches</td>
<td>LENGTH (i), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>342n*</td>
<td>Length or first dimension, feet</td>
<td>LENGTH (f), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>343n*</td>
<td>Length or first dimension, yards</td>
<td>LENGTH (y), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>344n*</td>
<td>Width, diameter, or second dimension, inches</td>
<td>WIDTH (i), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>345n*</td>
<td>Width, diameter, or second dimension, feet</td>
<td>WIDTH (f), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>346n*</td>
<td>Width, diameter, or second dimension, yard</td>
<td>WIDTH (y), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>347n*</td>
<td>Depth, thickness, height, or third dimension, inches</td>
<td>HEIGHT (i), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>348n*</td>
<td>Depth, thickness, height, or third dimension, feet</td>
<td>HEIGHT (f), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>349n*</td>
<td>Depth, thickness, height, or third dimension, yards</td>
<td>HEIGHT (y), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>353n*</td>
<td>Area, square inches</td>
<td>AREA (i²), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>354n*</td>
<td>Area, square feet</td>
<td>AREA (f²), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>355n*</td>
<td>Area, square yards</td>
<td>AREA (y²), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>362n*</td>
<td>Logistic volume, quarts</td>
<td>VOLUME (q), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>363n*</td>
<td>Logistic volume, gallons U.S.</td>
<td>VOLUME (q), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>367n*</td>
<td>Logistic volume, cubic inches</td>
<td>VOLUME (i³), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>368n*</td>
<td>Logistic volume, cubic feet</td>
<td>VOLUME (f³), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>369n*</td>
<td>Logistic volume, cubic yards</td>
<td>VOLUME (y³), log</td>
<td>N4+N6</td>
</tr>
<tr>
<td>400</td>
<td>Customer's Purchase Order Number</td>
<td>ORDER NUMBER</td>
<td>N3 + X..30</td>
</tr>
<tr>
<td>401</td>
<td>Global Identification Number for Consignments (GINC)</td>
<td>GINC</td>
<td>N3+X..30</td>
</tr>
<tr>
<td>402</td>
<td>Global Shipment Identification Number (GSIN)</td>
<td>GSIN</td>
<td>N3+N17</td>
</tr>
<tr>
<td>403</td>
<td>Routing Code</td>
<td>ROUTE</td>
<td>N3+X..30</td>
</tr>
<tr>
<td>410</td>
<td>Ship To – Deliver To: GS1 Global Location Number (GLN)</td>
<td>SHIP TO LOC</td>
<td>N3+N13</td>
</tr>
<tr>
<td>413</td>
<td>Ship For – Deliver For – Forward To: GS1 Global Location Number (GLN)</td>
<td>SHIP FOR LOC</td>
<td>N3+N13</td>
</tr>
<tr>
<td>420</td>
<td>Ship To – Deliver To: Postal code within a single postal authority</td>
<td>SHIP TO POST</td>
<td>N3 + X..20</td>
</tr>
<tr>
<td>421</td>
<td>Ship To – Deliver To: Postal code with ISO 3166 country code</td>
<td>SHIP TO POST</td>
<td>N3+N3+X..9</td>
</tr>
</tbody>
</table>

(*) ‘n’ used to indicate the decimal point position.
(**) Format of the Application Identifier + Format of the data element
6 Label Lay-out Rules

6.1 Free Format
The 'Free Format' building block may include any text or graphics not meant for automated processing. The name and address of the sender and receiver are typical examples. In many instances companies may also wish to add specific graphics to a label (e.g., company logos).

[6-1] *(Normative)* All text shall be clearly legible and no less than 3 millimetres / 0.118 inches high.

[GENSPECS, 6.7.4.3]

6.2 Non-HRI Text with Data Titles
The 'Non-HRI Text with Data Titles' building block contains data elements with data titles. Text with data titles is text designed to support manual operations and to facilitate key entry in menu driven systems. It should at a minimum contain the text equivalent of all data elements represented in barcodes, and is comprised of data titles and data content.

[6-2] All barcoded data elements must also be included as text with data titles.

[6-3] *(Normative)* The data content should be at least 7 mm (0.28 inch) in height [GENSPECS, 6.7.4.2.2]

[6-4] *(Normative)* Application Identifiers (AIs) must not be included in the text with data titles.

[GENSPECS, 6.7.4.2.2]

6.2.1 Data titles
Data titles are the standard abbreviated descriptions of element strings used to support the human interpretation of encoded data. Data titles should be used adjacent to all data fields included in the 'Non-HRI text Including Data Titles' building block.

Note: Data Titles may also be used adjacent to Barcodes and HRI.

[6-5] *(Normative)* For each included data field representing a barcoded data element the GS1 data title related to the AI must be included.

[6-6] *(Normative)* If there is no language agreed between trading partners, data titles must be printed in English. As an option left at the discretion of the labeller, a second language can be added. For English data titles, the exact data titles as specified in the 'GS1 General Specifications' should be used. [GENSPECS, 6.7.4.2.2]

[6-7] Data titles should follow the format as specified in the 'GS1 General Specifications', in particular they should be presented in UPPERCASE when indicated.

[6-8] To avoid any ambiguity in the human interpretation of dates the data tag for dates may be followed by the chosen format. E.g. BEST BEFORE (dd.mm.yyyy): 24.12.2013. This is not to be confused with the format to be used within the barcoded data field which is always YYMMDD.

6.3 Barcodes and HRI
The 'Barcodes and HRI' building block contains the GS1-128 barcode(s) including their human readable interpretation (HRI).

The barcodes on the GS1 Logistics Label conform to the GS1-128 standard. The GS1-128 standard is a special version or subset of the Code 128 standard. GS1-128 barcodes can hold GS1 identification keys (GTIN, SSCC, GLN) and attribute data (batch/lot number, expiry date, etc.).

[6-9] *(Normative)* GS1-128 barcodes must be distinguished from Code 128 barcodes by the use of the special Function Code 1 immediately after the start character. If FNC1 is not included at the start of each symbol, the barcode will not meet the requirements of the GS1 System.

An enlarged section of the first part of a GS1-128 barcode showing the FNC1 in blue is shown below.
Application Identifiers

Each data field in a GS1-128 barcode is preceded by an Application Identifier (AI). Application Identifiers (AIs) are internationally agreed numeric prefixes used within the GS1-128 barcode to identify the meaning and format of the data following each AI.

The data fields are either of fixed or variable length, depending on the AI. There is a range of AIs for additional data, such as weight, area or volume. Full details of all the GS1 Application Identifiers can be found in the ‘GS1 General Specifications’ [GENSPECS].

[6-10] All the data in each GS1-128 barcode is denoted by the use of the GS1 Application Identifiers, which specify the format of the data which follows them. This data may be numeric only, alphanumeric, fixed or variable in length.

Concatenation

An Application Identifier and the data that follows it are known as an element string, and several element strings may be shown in one GS1-128 barcode. This joining together of element strings is known as concatenation.

Concatenation is an effective means for encoding several AIs in a single barcode and should be used to save label space and optimise scanning operations.

[6-11] The best practice is to put data of fixed length before any variable data

[6-12] The order in which the element strings appear in GS1-128 barcodes is free. Good software contains optimisation procedures, which improves scanning and printing

[6-13] (Normative) The SSCC, defined by AI (00), shall always appear in the lowest barcode on the label [GENSPECS, 6.7.4.1.1].

[6-14] The SSCC can be alone or concatenated with other data in the same barcode. Concatenation shall not be used with SSCC on cartons and outer cases and on standard A6 / 4x6 labels.

X-dimension (Symbol Size)

The X-dimension is the specified width of the narrowest element in a barcode symbol.

[6-15] (Normative) The allowed X-dimension range for the GS1-128 barcode symbol is between 0.495 mm (0.0195") and 0.94 mm (0.0370"). The target X-dimension recommended for the GS1-128 barcode symbol is 0.495 mm (0.0195"). [GENSPECS, 5.5.2.7, table 5].

Note: If the item is too small to accommodate the minimum X-dimension, the minimum X-dimension is 0.250 millimetre (0.0098 inch). [GENSPECS, 5.5.2.7, table 5, note *]

[6-16] When multiple barcodes are used it is recommended to use similar X-dimensions. This helps scanning systems to work more effectively.

[6-17] Careful consideration should be given to the likely scanning environment (e.g., freezing can degrade print quality and using an X-dimension at the higher end of the permitted range can help to reduce this effect).
Barcode height

[6-18] (Normative) A minimum height of at least 31.75 mm (1.250") applies to all the GS1-128 barcodes on the label. The minimum symbol height indicated is for bar height only and does not include the Human Readable Interpretation. [GENSPECS, 5.5.2.7, table 5]

Note: If the item is too small to accommodate the minimum, the minimum bar height is the greater of 15 percent of the symbol width including Quiet Zones or 12.70 millimetres (0.500 inch). If the package is physically too small to accommodate this rule, further truncation is permitted, but in no case shall the bar height be less than 5.08 millimetres (0.200 inch). [GENSPECS, 5.5.2.7, table 5, note **]

Quiet Zones / Light Margins

[6-19] (Normative) Barcodes shall be printed with quiet zones (or light margins) at each side. The quiet zones must be at least 10 X-dimension (10 X) in width. Centred barcodes will help ensure the quiet zones are respected.

Orientation and placement

[6-20] (Normative) Horizontal orientation (picket fence orientation) of barcode symbols must be used on logistic units. In other words, the bars and spaces shall be perpendicular to the base on which the logistic unit stands.

Human readable interpretation

[6-21] All the data shown in each barcode should be provided below each symbol. Brackets (parentheses) are normally printed around each AI but these must not be encoded in the barcode. The data must be shown in characters at least 3 mm high and clearly legible.

AI uniqueness (no repetition)

[6-22] Each Application Identifier (AI) may only occur once on a logistics label.

6.4 Rules related to label segments

The order and top/down alignment of label segments may vary depending on the size of the logistic unit and the business process being served.

[6-23] (Normative) Within each separate label segment the building blocks must be placed according to the lay-out defined in section 2.2.Building Blocks [GENSPECS, 6.7.3.2]

[6-24] (Normative) A segment holding the SSCC shall always be present, and shall be positioned under any other segments. [GENSPECS, 6.7.3]

[6-25] Segments may be printed separately in which case they should be placed vertically in close proximity of each other, with the segment containing the SSCC at the bottom. When segments are added separately, care should be taken not to obscure existing segments.

[6-26] The carrier segment may be replaced during the journey of the logistic unit. The original SSCC should be preserved in that case, either by leaving the segment holding the SSCC intact, or by reproducing the original SSCC on the new label / label segment.

7 Size of the GS1 Logistics Label

The physical dimensions of the label are determined by the labeller, but the size of the label should be consistent with the data requirements for the label. Factors influencing label dimensions include the amount of data required, the content and X-dimension of the barcodes used, and the dimensions of the logistic unit to be labelled. The business requirements for most users of GS1 Logistics Labels are met by using one of following:

A. Compact label
 - A6 (105 mm x 148 mm) or 4 x 6 inch, which is particularly suitable when only the SSCC, or the SSCC and limited additional data, is encoded. Applied for example on case labels.
B. Large label

- A5 (148 mm x 210 mm) or 6 x 8 inch, suitable when additional data such as trade item data are needed. Applied for example on pallet labels.
C. Other size labels

Other label dimensions are typically variations driven by data requirements or logistic unit size.

8 Label Placement

8.1 Label placement on larger logistic units (pallets, roll cages, etc.)

[8-1] (Normative) For all types of pallets, including full pallets containing individual trade items and single trade items, such as a refrigerator or washing machine, the target height for the bottom of the barcode is between 400 millimetres (16 inches) and 800 millimetres (32 inches) from the base of the pallet. For pallet less than 400 millimetres (16 inches) high, the barcode SHALL be placed as high as possible while protecting the barcode. [GENSPECS, 6.8.1.1]

[8-2] (Normative) The symbol including its Quiet Zones, SHALL be at least 50 millimetres (2.0 inches) from any vertical edge to avoid damage. [GENSPECS, 6.8.1.1]

[8-3] Each logistic unit should at the minimum have one label. For pallets it is recommended that two sides of the item are labelled the exact same data, to ensure one label is always visible (e.g. pallets that are stored either long or short edge facing). On rolling logistic units a label on one side is usually sufficient.

Note: There is no regulation that specifies where the labels should be placed – to the left, in the middle, or to the right on these sides – but as most forklift operators are right-handed, the most ergonomically correct scanning is done when the labels are placed to the right of each side.
8.2 Label placement on smaller logistic units (including parcels)

[8-4] (Normative) For cartons and outer cases, symbol placement will vary slightly in practice, however the target placement for the bottom of the barcode is 32 millimetres (1.25 inches) from the natural base of the item. [GENSPECS, 6.8.1.2]

[8-5] (Normative) The symbol including its Quiet Zones, should be at least 19 millimetres (0.75 inch) from any vertical edge to avoid damage. [GENSPECS, 6.8.1.2]

[8-6] Each logistic unit should at the minimum have one label.

Carton / Outer Case Labels: For Carton / Outer Case Labels the same guidelines apply. In situations where both a Carton / Outer Case Label as well as a Logistics Label need to be applied on the case, the recommendation is to place the GS1 Logistics Label to the left of the Carton / Outer Case Label, and to ensure that the information on the Carton / Outer Case Label remains visible.

8.3 Label placement on stacked pallets

Stacked pallets, also referred to as sandwich pallets, are groups of pallets that are stacked for shipment.

[8-7] When pallets are stacked they should be considered independent logistic units (see Figure below), each pallet should be identified with a unique SSCC.
If the group will be shipped as a unit and is physically joined using shrink-wrap, straps, or similar means (see Figure below), the group should be considered as a single logistic unit as well and an additional SSCC should be assigned to the stacked pallet group.

Note: In cases where the stacked pallets are shipped as one single unit, the original labels should not be visible. A master label with the SSCC for the pallet group should be applied to the outside of the wrapping. The wrap and master label may be removed upon receipt and the labels for each stacked pallet will be used to identify each pallet for subsequent processing.

Implementation Considerations

9.1 Best practice processes by role

Usually the shipper of the goods will create the logistics label and apply it to the logistic unit. Responsibility for the correctness of all the information contained on the label is assumed to rest with the shipper.

If it is not the shipper but the carrier or receiver creating the label, or replacing the label, or adding additional information to the label, this party is responsible for content and quality its own data and its compliance with data already present.

The table below lists various parties and how they may use the label in their business processes depending on the role they play.
Role of party

<table>
<thead>
<tr>
<th>Role of party</th>
<th>Best practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Materials Supplier</td>
<td>Provides a pallet label on pallets of raw materials when shipping to a supplier.</td>
</tr>
</tbody>
</table>
| Manufacturer/Supplier | Receives raw materials by scanning pallet labels and stores raw materials using these labels to identify the raw materials and to provide traceability.
 When producing finished goods will produce a new pallet label and use this as the identifier for internal storage.
 The pallet label's SSCC will also be used to identify stock when loaded onto outbound transport for transfer between distribution centres and for customers.
 If building a new pallet for a business customer they will affix a new pallet label. |
| Consolidator | Scans the pallet label to record the stock received.
 If storing stock will use the pallet label's SSCC as the identifier.
 If sending out the received pallets they will scan the pallet labels again when loading outbound transport.
 If breaking down and rebuilding pallets they will remove the old pallet labels and replace them with new pallet labels. |
| Distribution Centre (of customer retailer) | Scans the pallet label to record the stock received.
 If storing stock will use the pallet label's SSCC as the identifier.
 If building a new pallet for a business customer they will affix a new pallet label. |
| Customer (typically a business customer) | Scans the pallet label to record the stock received. |
| Warehouse Service Provider / Co-packer | Receive the stock using the inbound pallet label.
 Add value to the stock then build stock onto new pallets and affix a new pallet label.
 Retain a record of the relationship between the stock in the old consignment and stock in the new consignment. |
| Cross-docking between DCs | If dispatching or transferring the pallets between distribution centres, sending DC will scan the pallet labels when loading internal and outbound transport and scan them again to acknowledge receipt. |
| Transport Service Provider | Scans the goods upon loading to record the logistic units.
 Scans the goods upon unloading to record the logistic units.
 Provides status information on logistic unit level. |

9.2 Label implementation scenarios

Depending on the business scenario various label formats may be implemented. Some typical variants are:

- A pre-printed SSCC-only label is a good option when there is no ‘print and apply capability’. Pre-printed SSCC labels are applied to a logistics unit, scanned and then electronically associated to the GTINs and all related data. A pre-printed label can be applied anywhere in the supply chain (from when the pallet is produced to when it is received by a customer).

- A production label containing supplier and trade item information can be printed and applied at the time the pallet (logistics unit) is manufactured. This label can stay with the pallet/logistics unit through the supply chain if it is delivered in a full pallet quantity to the customer.

- A picked pallet label is printed and applied at the time the pallet (logistics unit) is picked for a customer, and may contain supplier, customer and carrier information.

- An existing SSCC label (e.g. pre-printed SSCC-only label or production label) is already applied, and the carrier or customer data is added by applying an additional label segment.
9.3 **Shipper / Supplier**

The shipper may be the supplier or a logistic service provider acting on behalf of the supplier. If the LSP acts as the shipper, after the supplier receives an order an Instruction to Despatch will be sent to the LSP. The LSP should be able to pick and load the shipment according to the instructions, this could include a reconfiguration of existing logistic units.

9.3.1 **Pre-requisites**

[9-1] The shipper / supplier should have the ability to communicate electronically.

[9-2] Trade item data alignment is a prerequisite in order to enable efficient shipping and receiving process. The shipper / supplier should ensure that master data have been communicated to the receiver / customer.

[9-3] Each warehouse should have scanners to read the GS1-128 barcode(s) printed on the labels.

9.3.2 **Creating the SSCC**

[9-4] SSCC numbers should be generated out of the logistics management system, e.g. the warehouse management system (WMS) or ERP.

[9-5] The Shipper should use its own GS1 company prefix to generate SSCC. *Note: If the shipper uses a cloud service to generate labels, SSCCs are usually generated from the IT solution provider's GS1 company prefix. This may lead to weaker traceability, and is an incorrect use of the GS1 standards.*

[9-6] SSCCs that have been created should be archived for traceability purposes.

Figure 9-1 Examples of system integration issues

9.3.3 **Printing the label**

Preparation

[9-7] Standard size of pallet labels are recommend, e.g. A5 or A6 sizes.

[9-8] Label material and ink have to be compatible. Material or ink which is sensitive for heat is not acceptable, e.g. avoid thermal paper that changes colour when exposed to heat or sun, and inks that can be easily smudged.

[9-9] It is recommended to print black barcodes on a white background.

[9-10] Recycling of packaging materials is becoming increasingly important. Implementers should be aware of the recycling characteristics of the applied label material. E.g. aligning shrink-wrap material and label materials (for example by using plastic labels) may help to improve the recycling rate of pallet materials.

[9-11] The label printer should be checked regularly to ensure it is up and running, and serviced and calibrated correctly.

Label verification

[9-12] Label verification during implementation should include three different levels (see appendix A for a detailed implementation verification procedure):
9.3.4 Attaching the label

It is important the right label(s) is / are attached to the right logistic unit.

[9-14] When not attached automatically, an option is to print labels for each logistic unit one at the time in order to limit risk of applying the wrong label.

[9-15] Other common problems to avoid are:

- Wrinkling when applying the label.
- Incorrect placement of the label.

Figure 9-3 Examples of placement issues

9.3.5 Sending the transport instruction

[9-16] If available at the time that the transport instruction is sent to the LSP, the transport instruction should specify the SSCCs of the logistic units to be transported.
9.3.6 Staging / Loading the logistic units
[9-17] Only loaded pallets should be scanned. This ensures correct delivery information for despatch advice / ASN and transport documents.

9.3.7 Sending the Despatch Advice / ASN
[9-18] The Despatch Advice / ASN should be sent upon staging / loading of the goods, in order to maximise the chance that the information matches the actual shipment.
[9-19] The Despatch Advice / ASN should specify for each logistic unit the SSCC and the contained trade items.
[9-20] The variable data related to the trade item must match the information of the actual goods present on the logistic unit.

9.4 Carrier
The optimal collaboration between a supplier (shipper) – carrier – customer (receiver) is crucial for an efficient shipping and receiving process, and the carrier plays a central role.

9.4.1 Pre-requisites
[9-21] The carrier should have the ability to communicate electronically
[9-22] Each truck should have a scanner to read the barcode(s) printed on the labels

9.4.2 Processing the Transport Instruction
[9-23] In the Transport Instruction information on the logistic units that need to be transported may be included. If that is the case the carrier should ensure that this information is communicated to the person in charge of the transport execution, for example the driver.

9.4.3 Loading the logistic units
[9-24] The carrier may scan the label in order to register which logistic units were loaded.
[9-25] When a label is already present additional transport data is best added on an extra label, attached adjacent to and preferably above the already present label. When a label is added separately, care should be taken not to obscure the existing label. The extra label should only contain data not yet present on the other label.

Any additional labels that contain information already present on other labels pose a potential risk for non-scans/confusion.
When no label is present

[9-26] When no label is present upon collecting of the goods the carrier may generate the SSCC based on its own GS1 company prefix and for example create an SSCC-only label or a transport label.

9.4.4 Unloading the logistic units

[9-27] The carrier may scan the label in order to register which logistic units were unloaded.

9.4.5 Sending the Transport Status Notification / Information on Delivery (IOD)

[9-28] Upon completion of the delivery the carrier should send a Transport Status Notification informing his client on the completion of the transport order and on any discrepancies that occurred.

9.5 Receiver / Customer

The receiver may be the customer, for example a retailer, or a logistic service provider receiving the goods on behalf of the customer.

9.5.1 Pre-requisites

[9-29] The receiver / customer should have the ability to communicate electronically

[9-30] Master data of the trade item need to be in place. Unknown items cannot be received efficiently.

[9-31] Each warehouse should have scanners to read the barcode(s) printed on the labels

[9-32] Each warehouse should have a warehouse management system to support the receiving process

[9-33] Rejection of delivery (or otherwise) without Despatch Advice / ASN should be included in the contract
9.5.2 Processing the Despatch Advice / ASN

[9-34] The Despatch Advice / ASN should be received and processed into the receivers’ system before the goods arrive.

9.5.3 Inspecting and registering the received logistic units

Depending on the agreement between the supplier and receiver the SSCC may be scanned and the goods accepted as complete as indicated in the Despatch Advice / ASN. Alternatively, the receiver may wish to check the logistics units to confirm that the contents are as agreed in the Despatch Advice / ASN and also to check for any damage. This would apply particularly where the logistics unit contains multiple products. Checks will depend on the contract between the receiver and their supplier.

[9-35] Labels should not be removed before put away is complete, and preferably kept to assist traceability if necessary

[9-36] When the SSCC is scanned it should match the information in the Despatch Advice / ASN, and the received amount should be automatically added to the Warehouse system and update the stock level.

![Figure 9-5](image1)

Figure 9-5. Example of issues occurring at receipt

No label

9.5.4 Sending the receiving advice

The receiver can use the Receiving Advice message to notify the supplier that the goods have been received. He may confirm receipt of all products or only those where there may be an issue e.g. damaged or missing goods. This will allow the supplier to replace the missing or damaged goods promptly. For maximum benefit, the supplier should have an automated process to efficiently recognise and action any errors as notified by the customer.

9.5.5 Storing the goods

[9-37] Where possible, the goods should be stored preserving the SSCC relationship so that they can be traced when necessary.

9.5.6 Handling quality issues found after goods receipt

If there is damage to the goods, or any other product issues, then the supplier (and haulier if not managed or owned by the supplier) should be notified so that they can make adjustment to their invoice before sending to the customer.
10 Practical Examples

10.1 SSCC-only label

This example shows a label containing only an SSCC. Such labels can be applied at production time, but also during transport or receipt in case no label is present on the logistic unit.

Building blocks (top-down):
- Text with Data Titles: SSCC
- Barcodes + HRI: AI (00)
10.2 GS1 Logistics Label for homogeneous logistic unit

<table>
<thead>
<tr>
<th>Mandatory data</th>
<th>SSCC with AI (00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional data</td>
<td>GTIN2 with AI (02) + count of trade items contained with AI (37)</td>
</tr>
<tr>
<td></td>
<td>batch / lot number with AI (10)</td>
</tr>
<tr>
<td></td>
<td>one of the following dates if applicable: production date with AI (11), packaging date with AI (13), best before date with AI (15), expiry date with AI (17)</td>
</tr>
</tbody>
</table>

Based on [ELL] example
10.3 GS1 Logistics Label for homogeneous logistic unit with variable measure items

<table>
<thead>
<tr>
<th>Mandatory data</th>
<th>SSCC with AI (00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional data</td>
<td>GTIN1 leading with ‘9’ with AI (02), count of trade items contained with AI (37) one of the measures: net weight (kg) with AI (310n), length (m) with AI (311n), area (m²) with AI (314n), net volume (l) with AI (315n), variable count with AI (30), batch / lot number with AI (10) one of the following dates if applicable: production date with AI (11), packaging date with AI (13), best before date with AI (15), expiry date with AI (17)</td>
</tr>
</tbody>
</table>

Based on [ELL] example
10.4 GS1 Logistics Label for orderable pallet

<table>
<thead>
<tr>
<th>Mandatory data</th>
<th>SSCC with AI (00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional data</td>
<td>GTIN2 with AI (02) count of trade items contained with AI (37) OR GTIN3 with AI (01)*</td>
</tr>
<tr>
<td></td>
<td>batch / lot number with AI (10) one of the following dates if applicable: production date with AI (11), packaging date with AI (13), best before date with AI (15), expiry date with AI (17)</td>
</tr>
</tbody>
</table>

Based on [ELL] example
10.5 GS1 Logistics Label for logistic unit that is a single trade item

If a logistic unit includes only one trade item, a logistics label should contain the following data:

<table>
<thead>
<tr>
<th>Mandatory data</th>
<th>SSCC with AI (00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional data</td>
<td>GTIN with AI (01)</td>
</tr>
<tr>
<td></td>
<td>batch / lot number with AI (10) – if applicable</td>
</tr>
<tr>
<td></td>
<td>serial number with AI (21) – if applicable</td>
</tr>
<tr>
<td></td>
<td>one of the following dates if applicable: production date with AI (11), packaging date with AI (13), best before date with AI (15), expiry date with AI (17)</td>
</tr>
</tbody>
</table>

Based on [ELL] example
10.6 GS1 Logistics Label for mixed pallet

Mandatory data | SSCC with AI (00)
Optional data | none

FREE INFORMATION
 e.g. Company Name of Sender, Address,
 Product Description, ...

SSCC:
 059076543210000091

Source [ELL]
10.7 GS1 Logistics Label with logistic unit and transport information in separate segments

Source [GENSPECs]

This example shows a case label that may be applied at the time of transport. Besides the SSCC it contains information on the route and destination.

Segments and building blocks (top-down):

- Carrier Segment
 - Free Format: FROM ; TO
 - Barcodes and HRI: SHIP TO POST
 - Text with Data Titles: CARRIER; B/L ; PRO
- Supplier Segment
 - Barcodes and HRI: SSCC; AI (00)
10.8 GS1 Logistics Label with supplier, customer and transport segments

This example shows a case label that may be applied in a cross-docking scenario. Besides the SSCC it contains transport information and information on the final customer destination.

Segments and building blocks (top-down):

- Carrier segment:
 - Free Format: FROM ; TO
 - Barcodes and HRI: SHIP TO POST
 - Text with Data Titles: Carrier ; B/L ; PRO
- Customer segment
 - Free Format: PO ; DEPT
 - Barcodes and HRI: Store Number
 - Text with Data Titles: Customer
- Supplier segment
 - Barcodes and HRI: SSCC; AI (00)
10.9 GS1 Logistics Label with transport information including postal code

In this example, the postal code is used with the Application Identifier (421).

Source: STILL
10.10 GS1 Logistics Label with transport information including routing code and GINC

In this example, the routing code is used with the Application Identifier (403)

<table>
<thead>
<tr>
<th>Von/From</th>
<th>An/To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustermann GmbH</td>
<td>Edificio de Servicios Generales</td>
</tr>
<tr>
<td>Herr Schmidt</td>
<td>Ms Alicia Romero</td>
</tr>
<tr>
<td>Hauptstr. 35</td>
<td>Calle Centella 18</td>
</tr>
<tr>
<td>60100 Frankfurt</td>
<td>08820 Barcelona</td>
</tr>
<tr>
<td>Germany</td>
<td>Spain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSCC</th>
<th>ROUTE</th>
<th>GINC</th>
</tr>
</thead>
<tbody>
<tr>
<td>395011015300000011</td>
<td>402621</td>
<td>950110153B01001</td>
</tr>
</tbody>
</table>

Dimensions / Weight: 80x20x20 cm / 50,0 kg
Billing No.: 5020613963 69 01

Source [GENSPECs]

This example shows a pallet label that may be applied at the time of transport. Besides information on the logistic unit it contains information on the route and destination.

Building blocks (top-down):
- Free Format: Von/From ; An/To
- Text with Data Titles: SSCC; ROUTE; Dimensions / Weight; Billing No.
- Barcodes and HRI: AI (403); AI (401); AI (00)
11 References

- [GENSPECS] GS1 General Specifications – version 14, GS1 2014

 Important: Changes to paragraph 6.7 as specified in the GSCN for Work Request 14-000005 have also been taken into account. These changes will be incorporated in version 15 of the GS1 General Specifications.

- [TLKEYS] GS1 Identification Keys in Transport & Logistics, GS1 2013

- [GDD] Global Data Dictionary

 Repository of all data elements and terms used across all GS1 Standards

 http://apps.gs1.org/GDD

- [1DVER] GS1 Barcode Verification Process, GS1 2012

- [ELL] GS1 in Europe Logistic Label version 14, GS1 in Europe 2007

- [STILL] Standard International Logistics Label (STILL), GS1 2007

 Important: The information contained in the STILL guideline has been incorporated in the new GS1 Logistics Label Guideline. The STILL guideline will no longer be updated.

A Appendix A - GS1 Logistics Label Verification

This section provides a brief summary of the GS1 Logistics Label Verification procedures as applied by GS1 Member Organisations in order to assess the quality of logistics labels.

Note: Verification of the GS1-128 Symbol is not described in this section. Please refer to the Barcode Verification Process – Implementation Guide [1DVER] for guidance on this topic.

A.1 Basic principles

Logistics label verification aims at checking the label’s compatibility with the GS1 standards and guidelines. Verification helps to ensure that GS1 Logistics Label implementations comply with the GS1 System, and result in logistics labels that can be used by all supply chain partners.

Verification should be an integral part of quality control processes. It should be performed during initial implementation and repeated at regular intervals once operational.

Verification can be performed by GS1 Member Organisations or by companies authorised by GS1 to issue such verification. In case of a problem, standard verification reports should be used to communicate the source of the problem.

A.2 Common verification approach

To ensure a common logistics label verification approach a standard verification procedure is needed. This will guarantee similar results regardless of where the symbols are tested. This section aims at highlighting critical issues relating to verification.

A.2.1 Visual appearance

The visual assessment includes:

- the dimension of the label
- the correct placement of segments and building blocks
- correct languages of data titles applied
- correct data titles in the middle part for encoded information
- Are there any lines through the barcodes or speckles?
- Is the barcode at least 31.75 mm / 1.250" high?
- Is there sufficient space on either side of the barcode?

A.2.2 Data content

Data content verification includes:

- company prefix (or prefixes applied)
- GS1 identification keys applied (e.g. GTIN, SSCC)
- check digits of all GS1 identification keys applied (e.g. GTIN, SSCC)
- Applied GS1 Application Identifiers and their structure

A.2.3 Technical parameters

Verification of technical parameters includes all the checks for GS1-128 symbols as defined in the [1DVER] guide, and additionally:

- correct combinations of data elements, mandatory association of data elements (e.g. AI (02) and AI (37))
- correct structure of data elements
- correct check digits of GS1 identification keys (e.g. GTIN, SSCC) presented in the barcode symbol

A.2.4 Verification report

Verification reports should include:
- the list of parameters that were verified
- information on whether a given parameter complies with GS1 requirements
- in case of a negative assessment – information on correct data and recommendations on how to avoid mistakes
- A copy of the verified label should be attached to the report.
Appendix B – Label, symbol and text sizes

B.1 A6 / 4.1 x 5.8 inch

minimum free format text size: 3.2 mm / 0.13 in (Arial 7)

minimum size of data field: 7.1 mm / 0.28 in (Arial 18)

height 32 mm / 1.26 in width 77 mm / 3.05 in

(00) 3 9501101 001300012 9

HRI: 4.8 mm / 0.19 in (Arial 12)
B.2 A5 / 5.8 x 8.3 inch

minimum free format text size: 3.2 mm / 0.13 in (Arial 7)

minimum size of data field:
7.1 mm / 0.28 in (Arial 18)

height 32 mm / 1.26 in width 77 mm / 3.05 in

(00) 39501101 0013000129

HRI: 4.8 mm / 0.19 in (Arial 12)